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General Analysis of a Parallel-Plate
Waveguide Inhomogeneously Filled

with Gyromagnetic Meclia

MICHAL MROZOWSKI AND JERZY MAZUR

,4b.v@uct — The boundary value problem for a parallel-plate wavegnide

filled with inhomogeneous gyromagnetic medium is expressed and thor-

oughly examined in terms of a linear operator equation. A snitable vector

definition of transverse mode fnnctions is given and their completeness and

orthogonality are proved. Applying a new set of continuity conditions for

field components normal to the cross-sectional interface, the transfer

matrix for the multilayered parallel-plate wavegniding structure is de-

termined and used to formulate a characteristic equation. The analysis is

illustrated by the numerical investigation of eigenfunctions and eigenvahres

of a two layer ferrite-air guide.

I. INTRODUCTION

w

AVEGUIDING structures inhomogeneously filled

with isotropic or anisotropic—mainly gyrotropic

media are of increasing interest for microwave and milli-

meter wave integration applications [1]–[10]. It has been

found that simple methods of analysis of such structures

do not lead to reliable results and therefore, the rigorous

techniques of variational character should be applied in

order to get an accurate solution.

In general, uniform guides like slot-microstrip lines or

image guides. etc. and components constructed from these

waveguides consist of a number of homogeneous layers

with various types of planes (electric or magnetic) located

at the interfaces between the layers or in the field symme-

try planes. In most cases, subdivision of cross-sectional

geometry of such structures leads to constituent subregions

which can be considered as multilayered parallel-plate

lines. This recognition is the fundamental concept of vari-

ous exact methods in which, each such part of the wave-

guide is analyzed separately and the solution for the com-

plete line is obtained by consequent matching of tangential

fields at the common boundaries.

The above-mentioned approach requires the ability to

represent the field components in each subregion in terms

of a complete set of transverse mode functions (eigenfunc-

tions). As far as dielectric structures are concerned this set

of transverse mode functions is easy to determine by

solving an appropriate Sturm–Liouville eigenvalue prob-

lem [14]. Since the theory of this eigenvalue problem is well
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developed one can formulate general properties of eigen-

values and eigenfunctions of arbitrarily filled isotropic

waveguide. In particular, it is possible to show that in such

structures the electromagnetic field can be expressed in

terms of independent, complete sets of transverse mode

functions, namely E and H, and that the mode functions

of the same type are multually orthogonal.

However, these conclusions are no longer valid for the

structures containing gyrotropic media. Therefore up until

now, very few [3]–[7] papers have been published concern-

ing the investigation of similar guides unless they are

homogeneously filled in the magnetization direction

[8]-[10]. To overcome theoretical problems the authors of

the papers [5]–[7] intuitively assume that it is possible to

express the fields in subregions of such structures in terms

of transverse mode functions. However, as far as we know

neither proper definition nor the most essential features,

(i.e., completeness, orthogonality and linear independent of

terms) of the set of eigenfunctions for structures filled with

gyromagnetic media have been given yet. Additionally,

such an intuitive approach leads to very intricate eigen-

value equations which are valid only for specific waveguide

geometries.

The purpose of the investigation reported here is to

define and examine the general properties of transverse

mode functions of a wide class of parallel-plate waveguides

filled with inhomogeneous gyromagnetic medium and mag-

netized perpendicularly to the bounding planes. The uni-

fying concept which accomplishes this objective is the

recognition that the boundary value problem for such

structures can be alternatively formulated in terms of an

operator equation. The domain of the operator is defined

as a EIilbert space and the results of spectral theory of

linear operators are applied. In consequence, a definition

of transverse mode functions is introduced and their prop-

erties are examined.

In particular it is found that:

1) the eigenfunctions of the waveguides inhomoge-

neously filled with gyromagnetic media should be

defined as a vector with two constituents (D, H),

(x-direction of magnetization);

2) the set of eigenfunctions is complete;

3) due to self-adjointness of the eigenvalue problem all

eigenvalues are real;
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4) all eigenfunctions are mutually orthogonal if an

appropriate definition of inner product is applied.

Additionally, the new set of continuity conditions for

normal field components is formulated and used to derive

the eigenvalue equation for an arbitrary multilayered struc-

ture containing gyromagnetic material. The developed

analysis is illustrated by the numerical investigation of

eigenvalues and eigenfunctions of a ferrite-air parallel-plate

waveguide.

The obtained results give a rigorous mathematical

foundation for further analysis of complex ferrite-filled

structures.

II. FORMULATION OF THE PROBLEM

Let us consider a parallel-plate waveguide shown in the

Fig. 1. The structure is filled with the gyromagnetic medium

magnetized along the x-direction with static internal mag-

netic field H,, bounded by either electric or magnetic walls

placed in the planes x = XO and x = x~ and laterally open.

It is assumed that the gyromagnetic medium described by

scalar relative permittivit y c(x) and tensor relative perme-

ability P(x) is lossless but it may be inhomogeneous with

respect to x-direction. Thus, both c and ~ are the functions

of position. Time harmonic variation of the form eJot will

be discussed in this study.

The electro-magnetic wave propagation in such a struc-

ture is governed by the following boundary value problem

5
curl — = – jkojl(x)fi; curl ~= &Ofi (Ia, b)

t(x)

div~ = O; div[~(x)~] =0 (Ic,d)

B(lli) =%=x,,.. (Ie)

where ~ is the electric $UX density, F is the normalized

magnetic field (H= qOH, qO— the intrinsic impedance of

the free space), and kO is the wavenumber in the free

space. The relative permeability tensor P(x) has the form

[

10 0

~(x) = o PI(X) 1–W2(X) .

0 JJ2(X) PI(X)

In (1) B( b, I?) = O is the required boundary condition on

x = XO and x = x~. In case of a magnetic wall it can be

writ ten as follows:

Similarly, in case of an electric wall

where VX is a scalar operator, representing the partial

derivative il/ ax.

nc
,9(4;),0‘4+T‘N

Fig. 1. A generaf structure of a parallel-plate line filled with inhomoge-

neous gyromagnetic medium.
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Fig. 2. Cross section of the multilayered gyromagnetic medium filled
paraflel-plate line. (a) C(x) and ~(x) are continuous functions inside
each layer, (b) c(x) and F(x) are constant inside eachlayer.

For generality of analytical formulation, we additionally

assume that all functions involved in (1) are piecewise

continuous on the interval (xO, x~). This assumption en-

ables us to analyze a very wide class of waveguiding

structures, namely:

a) layered waveguides with continuous variation of

medium parameters inside each layer (Fig. 2(a));

b) layered waveguides whose medium parameters are

constant inside each layer (Fig. 2(b));

c) waveguides whose parameters are continuous func-

tions of x.

A. Vector Wave Equation

In order to transform the bounday value problem (1)

into an alternative operator form which is more convenient

for analytical treatment, the vector wave equation will be

derived from Maxwell’s equations.

At this stage of analysis we make temporarily an ad-

ditional assumption that all functions of x have continuous

derivatives on the interval (xO, x~) which means that only

one class of waveguides, namely c, is considered. This

restriction cancels, for the time being, the assumption

made in the previous section, i.e., that all functions in (1)

are piecewise continuous. However, such a restriction is

very convenient from the analytical point of view because

it ensures that all the combination of functions can be

differentiated and therefore enables the necessary differen-

tial transforms to be unconditionally performed. This con-

straint will be discussed in detail in Section III-B.
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As the structure under investigation is infinite and later-

ally open we may put

6= B(x, y,z)=fi(x). e~Y+~=Z

and

ll=l?(x, y,z)=fi(x). e~~y+~’ (3)

where kY and kZ are the wavenumbers in y- and z-direc-

tions, respectively. Substituting (3) into Maxwell’s equa-

tions and carrying-through some algebraic and differential

manipulations (see Appendix A), we get the following

vector wave equation:

where

(4)

[11All = 6(X) V.. —vX +k;peff (x)c(x)+k; +k;
[(x)

P2(X)
Al, =–kOc(x)-——

pi(x) ‘“’

HA21=VYkof$J
[11A22=vX —vx +k; +k; +k;~(x)

PI(X)

with P~ff = [P?(x) – P3(x)]/pi(x). For the sake of clarity,
the y and z dependence exp (k, z + k, y) was suppressed in

the above set of equations and henceforth will be omitted

in all expressions.

The above equation was derived under the assumption

that permeability and permittivity are continuous functions

of x. However, as will be shown later, this equation is still

valid if c(x) and F(x) are piecewise continuous. Therefore,

formula (4) defines the vector wave equation for arbitrary

parallel-plate structure filled with inhomogeneous

gyromagnetic medium described by c(x) and j?(x) mag-

netized along x-direction. From the equation it is seen

that E, and HX waves are coupled. This means that even

the unbounded gyromagnetic media may carry only

coupled hybrid EHY or HEX modes. In the isotropic limit,

when pl =1, v ~ = O, the first equation in (4) becomes

Helmholtz’s equation for E, modes whereas the second is

reduced to that for H. modes given by Collin [14].

III. OPERATOR FORMULATION

The boundary value problem (1) will be transformed in

this section into an alternative operator form. In order to

solve the resulting operator equation, the methods of func-

tional analysis will be applied. For that purpose it is

necessary to define the domain of the operator in terms of

Hilbert space. It means that this domain has to be de-

termined as a complete function space with an appropriate

definition of inner product [11], [12].

At this stage, we still assume that all functions in (1) are

continuous on the interval (XO, x~). Using the vector wave

equation derived in the previous section the boundary

value problem formulated by equations (la)–(le) takes the

following form:

where

and

with

Lrp+&p=O—

%P)l:=xo>x,=o—

[1 LL = ~;ll L12
“ 21 22

9=[1] [ ]
91 = Dx(x)

— V2 Hx(x)

1‘:VX +k;p.ff(x)~(x)
6(X)

P2(X)
L12=–kO~(x)–—

lb(x) “

(5a)

(5b)

(6)

(7)

HL21=vX ko~
c

[11
L22 = vr —’vX +k; c(x).

Pi(x)

In (5) both component functions PI and q2 have physical

meaning, which is to say their energy is finite. In other

terms they belong to the complete L2(x0, x ~) space.

Simultaneously, according to the assumption formulated in

the previous section, these functions and their derivatives

are continuous for XO< x < x~. Let ill denote the intersec-

tion of the above mentioned spaces then the domain of L

can be defined as a cartesian product of 0 ~. Formally, it

can be written as follows:

In other terms O is the vector space whose elements are

differentiable functions of finite energy with continuous

derivatives.

Having defined the domain of L we can introduce for

this space the definition of inner product and then examine

the properties of L in constructed in that way Hilbert

space. For two arbitrary functions g = ( Ul, u2)~ and g =

(u,, 02)T from Q we introduce the definition of inner prod-

uct in the form

J[()(g, Q) ~ ““ 1
1

‘UIUL+ U2V2 dx. (8)
xo~x

It is evident that the operator L which is determined by

(6) is linear. Additionally, it can be shown (Appendix B)

that for any combination of boundary conditions (2a) and

(2b) operator L is symmetric. This leads to the conclusion

that L is a self-adjoint operator [11], [12].
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At the next step of analysis we will find the solution of

alternative boundary value problem (5). Having formulated

it in terms of operator equation, we can apply now the

results of the spectral theory of linear operators [11], [12].

In particular, for equation (5) the following is true:

1) the operator equation (5) has solution for infinite

number of discrete eigenvalues 8,;

2) due to self-adjointness of L all eigenvalues are real

(therefore, all eigenfunctions Ti may be chosen to be—
real);

3) the set of eigenfunctions { ql } is dense in $3, i.e., is

the complete set of functio~s in that space;

4) any two distinct eigenfunctions of (5) are orthogo-

nal; it means that

(8[- 8k)(y’, y’) =0

for each values 1 and k;

5) the eigenvalues can be ordered such that

8.<81< . . . <8[<81~1 <....

A. Transverse Mode Functions

According to the definition of the domain of the oper-

ator L, every eigenfunction @ is a vector with two con-

stituent elements V!) and q~)–which correspond to D~’)(x)

and fi~’)( x ), respectively. Therefore, the eigenfunctions

{~’ } represent simultaneously the transverse mode func-

tions of a parallel-plate waveguide filled with inhomoge-

neous gyromagnetic ‘medium magnetized along x-direction.

From 3) one may conclude that any transverse field can

be expressed in terms of modal solutions. Moreover, these

transverse mode functions are mutually orthogonal. Bearing

in mind (8) and 4), the orthogonality relation for transverse

mode functions can be written as follows:

(9)

Here, Nlk is a normalization coefficient and i3i~ stands for

Kronecker delta.

If the wave equation (4) can be separated into a pair of

scalar Helmholtz’s equations (isotropic case) then each

component of the above integral vanishes independently

and one gets two well known orthogonality relations for Ex

and Hx modes [1].
The obtained result seems ,very important and useful. In

particular, it guarantees that transverse mode functions of

hybrid modes are linearly independent and therefore can

serve in various variational methods as a set of basis

functions.

B. Continuity Conditions for Transverse Mode Functions

In this section we will extend the above developed

analysis to the wider class of problems when c(x) and

~(.x) are piecewise continuous.

Let us assume that the interval (xO, x~) has been divided

into N-parts and c(x) and P(x) are continuous on the

interval (x, _l, XI) i =1 . . . N (Fig. 2a). In this case ~(x)

and F(x) can be expressed in the following manner:

Here, %, is the characteristic function of i th region

.%”,=1, forx,_l<x <xl

= o, elsewhere.

To answer the question whether the hitherto developed

analysis still holds we must come back to Section II where

the wave equation was derived. In order to enable us to

perform the necessary differential operations, we assumed

there that all functions and their derivatives are continuous

on the interval ( XO, x~ ). As a matter of fact this restriction

is too severe because it suffices to require the expressions

to which operator VX is applied, to be continuous.

Hence, considering equations (A.1O) and (A.12) given in

Appendix A we can formulate the following necessary

continuity conditions:

-D(’+’)(x)lx=x:D4J)(X)IX=.; – . (lOa)

J+@’yx)lx=x;=~ :(x)Vxai+wly=x;
6,(X) 1+

(lOb)

-fi’’+l’(x)l.x=xTX:’)(x) lx=.x; – ~ (1OC)

[

I-2 (x) 1

~kOD;l)(x)+ —VY41)(X)
Pi,(x) PI*(X) 1.y=~–
I=P2,+,(X)

koD4’+1’(x)+~1~vxE4’+l)(x)
Pl,+l(x) !+1 1,~=,y

(led)

Note, that although the interface betweeg different mag-

netic media is considered, the normal Hx component is

continuous across the boundary. ‘This results from the form

of the relative permeability tensor ~ defined in Section II

in which, first diagonal element is equal one. If the restric-

tions (10) are fulfilled, then the boundary value problem

(1) can be alternatively expressed in terms of the operator

equation (5) with linear operator L defined by (6). Simulta-

neously, it is possible to show that the proof of the symme-

try of the operator L given in Appendix B is still valid.

Let us examine now whether these necessary conditions

are at the same time the sufficient conditions. In other

words we will investigate if they lead to the continuity of

tangential components at the cross-sectional interface.

We may assume that the wavenumbers k~~) and k$’) are

the same in each layer. For i th cross-section interface we
(f) = kfi+l~ = kY and kj’) = kj’+l) = k,. Using (A.3),put kY

(A.6), (A.8) ~ogether with (All) and inserting into (10), we

have

D}’)(x) D$+l)(x) ‘
—— .

cl(x) ,=x- ~1+-l(x) .x=x:

-IW’+’)(x)lx=x:.qqx)lx=x; – , (“11)
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Here, t denotes components tangential to the cross-sec-

tional interface. This implies that the conditions (10) are

entirely equivalent to (11). Thus, we have proved that the

equations (10) form the set of necessary and at the same

time sufficient conditions for normal field components DX

and l?X. If they are fulfilled then the tangential fields are

simultaneously matched.

IV. EIGENFUNCTIONS AND EIGENVALUES OF A

PARALLEL-PLATE WAVEGUIDE FILLED WITH LAYERS

OF HOMOGENEOUS GYROMAGNETIC MEDIUM

Presently, in order to illustrate the developed analysis we

will show in detail how to determine transverse mode

functions when c and ~ are homogeneous inside each

interval, i.e., cl(x) = c,, ~t(x) = ~,. ln this case one gets

the structure of parallel-plate line presented in the Fig.

2(b).

First we will find the general solutions of Maxwell’s

equations in i th layer. From (4) we get the wave equation

=0

(12)

The general solution of the above linear, differential

equation can be expressed as follows:

D(’)(x) = ~ A$)S~’)exp h~)(x–xZ_l)x

k=l

E(’)(x) = ~ A~)R~)expA~)(x –x, _l) (13)x

k=l

where A ~ ) k = 1 to 4 are unknown constants whereas S~)

and R ~) are elements of fundamental matrix for (12) and

Xi) are roots of its characteristic equation.

Substituting (13) into (12) we get

~y)= -A$’= (+[g2+(g;-4go)1/2] )1/2

~(~)=-~$)=(~[~2-(&4 #2]}1/2 (14)

where

go ‘I@+ hk)(a +k:czpeff,). (15)

All particular solutions of (12) are linearly independent,

therefore we may put

R\i) = R!)= S$) = Sii) =1. (16a)

This implies

Such a choice of Rks and S~s guarantees that R ~ and S1,

which may be interpreted as coupling coefficients, vanish

for isotropic media, and in this case we get two uncoupled

waves.

Having defined the general solution of Maxwell’s equa-

tions in each layer we may determine the characteristic

equation for eigenvalues of the considered boundary value

problem. For this purpose we will apply the transverse

resonance method [9], [13], but instead of matching tangen-

tial fields we will use the continuity conditions (10). To

define the transfer matrix it is convenient to introduce a

continuity vector ~. According to (10), we may put

Subsequently, using the above equation together with (13)

we define the transfer matrix ~(l) which links the continu-

ity vector ~(z) between the extieme heights x;, x,+. ~ of the

i th layer.

F(’) IX=..,- –= _— - ~(’wx=x~., (18)

where

The elements of the matrix ~, take up the form
—

(20)

Using continuity conditions (10) and the transfer matrix

notation (19) one can express the transfer of the continuity

vector ~ through the multilayered structure in terms of

global transfer matrix ~—

~(N)lx=.yN= h Z(’)F(l)/..=xo= 2,x,f(1)l =.... (21)x
~=?J— —

—

Additionally, in order to fulfill the boundary conditions at

the upper x = x~ and lower x = XO screen, it suffices to

require

q(z) = q(l) = 0, for an electric wall

F~i) = @)= (),
)

i=lor N.
for a magnetic wall

Inserting (22) into (21) we get the set of linear algebraic

equations. According to the combination of boundary con-
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TABLE I
THE FORM OF THE CHARACTERISTIC EQUATION FOR DIFFERENT

COMBINATION OF BOUNDARY CONDITIONS f7jk are the

SUBMATRICES OF THE GLOBAL TRANSFER ~TRIX ~)
—

I boundary o ondi t ions at I charao t eris tic I

t 1 I I
X.x. X.XN equation

BE(;, ~) s O BE@, ~) = O det T=12 = o

ditions at x = XO and x = x~, the characteristic or eigen-

value equation takes up one of the forms given in Table I.

The solution of the set of linear equations obtained from

(21) under the condition of vanishing of the determinant of

an appropriate submatrix l& allows to determine (via (18)

and (10)) the field amplitudes A!) (k = 1 to 4, i = 1 to N).

Once these coefficients are evaluated, the transverse mode

function for a layered waveguide is constructed.

V. NUMERICAL EXAMPLE

In this section the results of the numerical investigation

of eigenvalues and eigenfunctions of a ferrite-air parallel-

plate waveguide are presented. In this case the characteris-

tic equation takes up the following form:

with

S,(3) = sinh ( ~l(~)df ) & = sinh(AOd.)

E1(3) = Cosh ( i(3)~f ) ~.= cosh(AOd.)

where df, d. is the height of ferrite and air layer, respec-

tively; cf is the relative permittivity of a ferrite medium

and A%= – k: – 8. From the above formula it is seen that

for the isotropic limit (i.e., Hi tends to infinity; VI ~ 1;

(Sl, R3, Pz) ~ O) one gets two independent characteristic
equations for Ex and HX modes similar to those given by

Emert [2].

The frequency behavior of the eigenvalues of the linear

operator (6) is shown in the Fig. 3. Numerical calculations

have been carried out for the frequency range where O <PI
<1. This region is attractive from the technical point of

view because of the existence of the strong field displace-

ment effect, in particular, in the frequency band in which
p ~ff <0. Note, that under the condition kY = O, according

{2

/0-

a

b

4

I I

Fig. 3. Eigenvaluesof the ferrite–air parallel-plate waveguide.

:1’’’’’’””’ r
:1 /

o i 5

x [mm]

-04 .

-06

-Ofi

-{

Fig. 4. Normalized field strength for two first eigenfunctions CPo
of the line depicted in Fig. 3, (~= 11 GHz). –

and pl

to the definition (7), the set of eigenvalues { ~i } defines the

modal spectrum {k:, } of a parallel-plate line. From the

diagram it is seen that the obtained results agree well with

theoretical predictions. In particular, the curves ti(~) have

no common points which means that the conclusion 5)

given in Section II is valid. However, the curves approach

one another which leads to the conclusion that there exists

a cross-coupling among the modes of a ferrite–air parallel-

plate line.

Additionally, two first eigenfunctions rp” aqd CP1are

plotted in the Fig. 4. It is seen that for rp” lhe HX c~mpo-

nent is dominant, therefore this eigenfun–ction corresponds

to the (HE ‘)X mode of the parallel-plate ferrite-air wave-
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TABLE II
THE VALUES OF THE INNER PRODUCT FOR Two FIRST

EIGENFUNCTIONS

i k
< yi) y’>/< y’, y’>

o 0 1.7 “ 10-’

1 0 1.864 “ 10
-6

1 1 1

guide. In the second case EX is dominant, therefore ql

corresponds to the ( EH1)X mode of the depicted lin~.

Finally, in order to verify the orthogonality relation (9), the

inner product for all the combinations of two first eigen-

functions was computed. The results are given in the Table

H.

The finite value of (rpl, rp”) can be easily explained by

the accuracy of utilized–n~merical methods as well as by

the precision of digital computations (seven significant

digits).

CONCLUSIONS

General properties of transverse mode functions of a

parallel-plate waveguide inhomogeneously filled with

gyromagnetic media have been investigated. These func-

tions which are the eigenfunctions of a linear operator have

been found to create a complete, orthogonal functional set.

Additionally, it has been shown that due to self-adjointness

of the operator all the eigenvalues are real and the eigen-

functions may be chosen to be real. For layered structures,

the new set of continuity conditions for field components

normal to an interface, has been formulated and used to

define the eigenvalue equation. The theoretical predictions

have been confirmed by the results of the numerical inves-

tigation of the eigenvalues and eigenfunctions of a

ferrite–air parallel-plate waveguide.

APPENDIX A

Derivation of a Vector Wave Equation

To derive a vector wave equation for inhomogeneously

filled parallel-plate waveguide, it is convenient to assume

that all functions involved in Maxwell’s equations have

continuous derivatives. Substituting (3) into (la) --(Id) we

get Maxwell’s equations in the following form:

DX DZ
k— –vx — + jkOpl(x)fiY

‘E(x) 6(X)

+kopz(x)fi, =() (Al)

D, Dx
v.y— –k,— –ko~z(x)fi,

c(x) -’E(X)

+ jkopl(x)fi, = O (A.2)

kzl?X –vX&Z – jkoDV = O (A.4)

V,fi), – kYfir – jkoDZ = O (A.5)

k,fiz – kZHY – jkoDX = O (A.6)

pl(x)(kYfiY +kzx~Z)– jpz(x)(k,fi=-kz~v)

+vXfiX = O (A.7)

kyDY + kzDZ + VXDX = O. (A.8)

Equation (Al) together with (A.8) yields

k~%+VIQ%aI+~kOk
+ kok=pz(x)fi, = O. (A.9)

Next, using (A.2) and (A.7) and inserting the results into

(A.9) one gets

‘x[&vxDl+k’’ff(x) Dx+(k~+k~)%

P2(X)
– —kovXfiX = O (A.1O)

Pi(x)

with

~eff (x) = ‘;(x) –~%(x)
l%(x) “

Similarly from (A.6) and (A.7) we obtain

k.~+kfi+~l(x)JYZZ
—koDX +

PI(X)
+V.fi.. = O. (All)

Combining this equation with (A.3)-(A.5) we have

[

1
V.x

P:!(x)
—vX@X+ko —DX
P,(x) l%(x) I

+ [(k: +k:)+k:~(x)]fi, =o. (A.12)

Equations (A.1O) and (A.12) can be rewritten in vector

form yielding the wave equation defined by (4).

APPENDIX 13

Proof of the Symmet~ of L

For any combination of boundary conditions (2a) or

(2b) with the inner product given by (8) operator L defined

by (6) is symmetric, i.e.,

(LLL,Q)-(u, LQ)=O
l), Dy

k —–k.— + jkOH~ = O (A.3)
Yt(x) “6(X)
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Proof According to (8) one gets

(U!, U)-(U>U)

=flN{(.lvx[*vx.l]-.lvx[*vx.l])(B,,)

+ (U~/C&eff (X)U1 – ‘lk~~eff (X)VJ (B.lb)

(+-“#o- )VXU2+U++XU2 (B.k)

‘(”2VX[’O-U11-U2VX[’0%”11)‘B’d)
‘(U2VX[AVXU21-U2VX[*VXU21)‘B-l’)

1+( U2k;C(X)U2 –U2k;E(X)U2) dx. (B.lf)

In the above expression components (B.lb) and (B.lf)

vanish. The remaining terms require integration by parts.

For instance integration of the first term in (B.la) gives

Plv’[ir’w’ldx‘
1

‘N
‘N 1

—Vxzq –
J(()

—V.vlvxfq

)

dx. (B.2)
‘Ult(x) ~oxocx

According to (2) the first term in (B.2) vanishes for any

combination of boundary conditions for x = X. and x = XN.

Applying the same procedure for remaining terms one gets

1 1“
– — Vxu,vxv, +

)

—VXV2VXU2 dx = Q.

k(x) l-h(x)
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