388 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-34, NO. 4, APRIL 1986

General Analysis of a Parallel-Plate
Waveguide Inhomogeneously Filled
with Gyromagnetic Media

MICHAY. MROZOWSKI anDp JERZY MAZUR

Abstract —The boundary value problem for a parallel-plate waveguide
filled with inhomogeneous gyromagnetic medium is expressed and thor-
oughly examined in terms of a linear operator equation. A suitable vector
definition of transverse mode functions is given and their completeness and
orthogonality are proved. Applying a new set of continuity conditions for
field components normal to the cross-sectional interface, the transfer
matrix for the multilayered parallel-plate waveguiding structure is de-
termined and used to formulate a characteristic equation. The analysis is
illustrated by the numerical investigation of eigenfunctions and eigenvalues
of a two layer ferrite~air guide.

I. INTRODUCTION

AVEGUIDING structures inhomogeneously filled

with isotropic or anisotropic—mainly gyrotropic
media are of increasing interest for microwave and milli-
meter wave integration applications [1]-[10]. It has been
found that simple methods of analysis of such structures
do not lead to reliable results and therefore, the rigorous
techniques of variational character should be applied in
order to get an accurate solution.

In general, uniform guides like slot-microstrip lines or
image guides, etc. and components constructed from these
waveguides consist of a number of homogeneous layers
with various types of planes (electric or magnetic) located
at the interfaces between the layers or in the field symme-
try planes. In most cases, subdivision of cross-sectional
geometry of such structures leads to constituent subregions
which can be considered as multilayered parallel-plate
lines. This recognition is the fundamental concept of vari-
ous exact methods in which, each such part of the wave-
guide is analyzed separately and the solution for the com-
plete line is obtained by consequent matching of tangential
fields at the common boundaries.

The above-mentioned approach requires the ability to
represent the field components in each subregion in terms
of a complete set of transverse mode functions (eigenfunc-
tions). As far as dielectric structures are concerned this set
of transverse mode functions is easy to determine by
solving an appropriate Sturm-Liouville eigenvalue prob-
lem [14]. Since the theory of this eigenvalue problem is well
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developed one can formulate general properties of eigen-
values and eigenfunctions of arbitrarily filled isotropic
waveguide. In particular, it is possible to show that in such
structures the electromagnetic field can be expressed in
terms of independent, complete sets of transverse mode
functions, namely E and H, and that the mode functions
of the same type are mutually orthogonal.

However, these conclusions are no longer valid for the
structures containing gyrotropic media. Therefore up until
now, very few [3]-[7] papers have been published concern-
ing the investigation of similar guides unless they are
homogeneously filled in the magnetization direction
[8]-[10]. To overcome theoretical problems the authors of
the papers [S]-[7] intuitively assume that it is possible to
express the fields in subregions of such structures in terms
of transverse mode functions. However, as far as we know
neither proper definition nor the most essential features,
(i.e., completeness, orthogonality and linear independent of
terms) of the set of eigenfunctions for structures filled with
gyromagnetic media have been given yet. Additionally,
such an intuitive approach leads to very intricate eigen-
value equations which are valid only for specific waveguide
geometries.

The purpose of the investigation reported here is to
define and examine the general properties of transverse
mode functions of a wide class of parallel-plate waveguides
filled with inhomogeneous gyromagnetic medium and mag-
netized perpendicularly to the bounding planes. The uni-
fying concept which accomplishes this objective is the
recognition that the boundary value problem for such
structures can be alternatively formulated in terms of an
operator equation. The domain of the operator is defined
as a Hilbert space and the results of spectral theory of
linear operators are applied. In consequence, a definition
of transverse mode functions is introduced and their prop-
erties are examined.

In particular it is found that:

1) the eigenfunctions of the waveguides inhomoge-
neously filled with gyromagnetic media should be
defined as a vector with two constituents (D, H),
(x-direction of magnetization);

2) the set of eigenfunctions is complete;

3) due to self-adjointness of the eigenvalue problem all
eigenvalues are real;
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4) all eigenfunctions are mutually orthogonal if an
appropriate definition of inner product is applied.

Additionally, the new set of continuity conditions for
normal field components is formulated and used to derive
the eigenvalue equation for an arbitrary multilayered struc-
ture containing gyromagnetic material. The developed
analysis is illustrated by the numerical investigation of
eigenvalues and eigenfunctions of a ferrite—air parallel-plate
waveguide.

The obtained results give a rigorous mathematical
foundation for further analysis of complex ferrite-filled
structures.

II. FORMULATION OF THE PROBLEM

Let us consider a parallel-plate waveguide shown in the
Fig. 1. The structure is filled with the gyromagnetic medium
magnetized along the x-direction with static internal mag-
netic field H,, bounded by either electric or magnetic walls
placed in the planes x = x;, and x = x,, and laterally open.
It is assumed that the gyromagnetic medium described by
scalar relative permittivity e(x) and tensor relative perme-
ability fi(x) is lossless but it may be inhomogeneous with
respect to x-direction. Thus, both € and j are the functions
of position. Time harmonic variation of the form e/** will
be discussed in this study.

The electro-magnetic wave propagation in such a struc-
ture is governed by the following boundary value problem

-

D 2 2 -
curl @) =— jkoli(x)H; curl H= jk,D (la,b)
€LxX ’
divD =0; div[i(x)B] =0  (ic,d)
B(B, H) =00y, sy (1¢)

where D is the electric flux density, H is the normalized
magnetic field (A = n,H, n,—the intrinsic impedance of
the free space), and k, is the wavenumber in the free
space. The relative permeability tensor i(x) has the form

1 0 0
i(x)=10 mlx) —Jpalx) ]
0 Jjpa(x) m(x)

In (1) B(T), H) =0 is the required boundary condition on
x=x, and x =x,. In case of a magnetic wall it can be
written as follows:

B(B, ) = 5*(D, i) =zzx-[}) K ][3} 0. ()

Similarly, in case of an electric wall

B(D, i) =B(D, A) =a’x-[‘:)x ﬂ[g —0 (2v)

where v, is a scalar operator, representing the partial
derivative d/dx.

A
B(D,H)=0
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Fig. 1. A general structure of a parallel-plate line filled with inhomoge-
neous gyromagnetic medium.
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Fig. 2. Cross section of the multilayered gyromagnetic medium filled
parallel-plate line. (a) ¢(x) and E(x) are continuous functions inside
each layer. (b) €(x) and [i(x) are constant inside each layer.

For generality of analytical formulation, we additionally
assume that all functions involved in (1) are piecewise
continuous on the interval (x,, x,). This assumption en-
ables us to analyze a very wide class of waveguiding
structures, namely:

a) layered waveguides with continuous variation of
medium parameters inside each layer (Fig. 2(a));

b) layered waveguides whose medium parameters are
constant inside each layer (Fig. 2(b));

c¢) waveguides whose parameters are continuous func-
tions of x.

A. Vector Wave Equation

In order to transform the bounday value problem (1)
into an alternative operator form which is more convenient
for analytical treatment, the vector wave equation will be
derived from Maxwell’s equations.

At this stage of analysis we make temporarily an ad-
ditional assumption that all functions of x have continuous
derivatives on the interval (x,, x ;) which means that only
one class of waveguides, namely ¢, is considered. This
restriction cancels, for the time being, the assumption
made in the previous section, i.e., that all functions in (1)
are piecewise continuous. However, such a restriction is
very convenient from the analytical point of view because
it ensures that all the combination of functions can be
differentiated and therefore enables the necessary differen-
tial transforms to be unconditionally performed. This con-
straint will be discussed in detail in Section III-B.
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As the structure under investigation is infinite and later-
ally open we may put
D=D(x,y,z)=D(x) ekrtks
and

H=H(x, y,z) = H(x)-e*rtks (3)

where k, and k, are the wavenumbers in y- and z-direc-
tions, respectively. Substituting (3) into Maxwell’s equa-
tions and carrying-through some algebraic and differential
manipulations (see Appendix A), we get the following
vector wave equation:

[An A12] Dx(x) _
Ay Ay Hx(x)
where

ES
n=e(x)v, (x)

ﬂ2( )

(4)

vx]+ k(%n“’eff (X)E(X)+ k% + k22

—kge(x) ——
m(x)
pa(x)
Ay =V ko
2 ’ [ 0.“1(35)}
Ay = ! K2+ k?+k§
1m =V mvx tryti; ge(x)
with p_; = [p3(x)— p3(x)]/p,(x). For the sake of clarity,

the y and z dependence exp(k,z + k) was suppressed in
the above set of equations and henceforth will be omitted
in all expressions.

The above equation was derived under the assumption
that permeability and permittivity are continuous functions
of x. However, as will be shown later, this equation is still
valid if e(x) and [i(x) are piecewise continuous. Therefore,
formula (4) defines the vector wave equation for arbitrary
parallel-plate structure filled with inhomogeneous
gyromagnetic medium described by €(x) and ji(x) mag-
netized along x-direction. From the equation it is seen
that £, and H, waves are coupled. This means that even
the unbounded gyromagnetic media may carry only
coupled hybrid EH_or HE, modes. In the isotropic limit,
when p =1, u,= O the f1rst equation in (4) becomes
Helmholtz’s equation for £, modes whereas the second is
reduced to that for H, modes given by Collin [14].

I11.

The boundary value problem (1) will be transformed in
this section into an alternative operator form. In order to
solve the resulting operator equation, the methods of func-
tional analysis will be applied. For that purpose it is
necessary to define the domain of the operator in terms of
Hilbert space. It means that this domain has to be de-
termined as a complete function space with an appropriate
definition of inner product [11], [12].

At this stage, we still assume that all functions in (1) are
continuous on the interval (x,, x ). Using the vector wave

OPERATOR FORMULATION
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equation derived in the previous section the boundary
value problem formulated by equations (1a)-(1e) takes the
following form:

Lo+8p=0 (5a)
B(?)Ix=x0,x]v=0 (Sb)
where
1‘11 Lll}
L= 6
ll‘Zl L22 ( )
=[(p1}= Dx('x)
oLl T A (x)
and
=4k, +k? (7)
with

=e(x)v, [ (x ) }+k§nu‘eff(x)€(x)
Mz( )

Ll = OE(X) 1( )
B ()
L21—vx|ik0’u1(x):|

1
L22 =vv{mvx:|+ ké((X)

In (5) both component functions ¢, and ¢, have physical
meaning, which is to say their energy is finite. In other
terms they belong to the complete L?(x,,xy) space.
Simultaneously, according to the assumption formulated in
the previous section, these functions and their derivatives
are continuous for x, € x < x,. Let Q; denote the intersec-
tion of the above mentioned spaces then the domain of L
can be defined as a cartesian product of £,. Formally, it
can be written as follows:

9= [m EQ=0,xQ,.
In other terms @ is the vector space whose elements are
differentiable functions of finite energy with continuous
derivatives.

Having defined the domain of L we can introduce for
this space the definition of inner product and then examine
the properties of L in constructed in that way Hilbert
space. For two arbitrary functions u = (uy, u,)” and v =
(v, v,)" from © we introduce the definition of inner prod-
uct in the form

af panf 1
{u,v) = fxo [mulvﬁruzvz}dx. (8)
It is evident that the operator L which is determined by
(6) is linear. Additionally, it can be shown (Appendix B)
that for any combination of boundary conditions (2a) and
(2b) operator L is symmetric. This leads to the conclusion
that L is a self-adjoint operator [11], [12].
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At the next step of analysis we will find the solution of
alternative boundary value problem (5). Having formulated
it in terms of operator equation, we can apply now the
results of the spectral theory of linear operators [11], [12].
In particular, for equation (5) the following is true:

1) the operator equation (5) has solution for infinite
number of discrete eigenvalues 6,;

2) due to self-adjointness of L all eigenvalues are real
(therefore, all eigenfunctions ¢’ may be chosen to be
real); B

3) the set of eigenfunctions {¢'} is dense in @, i.e., is
the complete set of functions in that space;

4) any two distinct eigenfunctions of (5) are orthogo-
nal; it means that

(31 - 8k)<$l, $k> =0
for each values / and k;
5) the eigenvalues can be ordered such that

8y <8 < - <8, <8 1<

A. Transverse Mode Functions

According to the definition of the domain of the oper-
ator L, every eigenfunction ¢' is a vector with two con-
stituent elements @{ and @) which correspond to D{”(x)
and H!(x), respectively. Therefore, the eigenfunctions
{¢'} represent simultaneously the transverse mode func-
tions of a parallel-plate waveguide filled with inhomoge-
neous gyromagnetic medium magnetized along x-direction.

From 3) one may conclude that any transverse field can
be expressed in terms of modal solutions. Moreover, these
transverse mode functions are mutually orthogonal. Bearing
in mind (8) and 4), the orthogonality relation for transverse
mode functions can be written as follows:

w1 N T
[ [mD)ﬁ(x)Df(X)JrHi(X)Hf(X)]dx=Nzk3/k-
©)

Here. N,, is a normalization coefficient and §,, stands for
Kronecker delta.

If the wave equation (4) can be separated into a pair of
scalar Helmholtz’s equations (isotropic case) then each
component of the above integral vanishes independently
and one gets two well known orthogonality relations for E,
and H_modes [1].

The obtained result seems very important and useful. In
particular, it guarantees that transverse mode functions of
hybrid modes are linearly independent and therefore can
serve in various variational methods as a set of basis
functions.

B. Continuity Conditions for Transverse Mode Functions

In this section we will extend the above developed
analysis to the wider class of problems when e(x) and
E(x) are piecewise continuous.

Let us assume that the interval (x,, x ) has been divided
into N-parts and e(x) and [E(x) are continuous on the
interval (x,_q, x,) i=1---N (Fig. 2a). In this case e(x)

and f(x) can be expressed in the following manner:

()25}

Here, %, is the characteristic function of ith region
’%; =1 ’
=0,
To answer the question whether the hitherto developed
analysis still holds we must come back to Section Il where
the wave equation was derived. In order to enable us to
perform the necessary differential operations, we assumed
there that all functions and their derivatives are continuous
on the interval (x,, x,). As a matter of fact this restriction
is too severe because it suffices to require the expressions
to which operator v, is applied, to be continuous.
Hence, considering equations (A.10) and (A.12) given in
Appendix A we can formulate the following necessary
continuity conditions:

forx, ;<x<x,
elsewhere.

DI (X)) e =D(’“)(X)|x . (10a)
1
v D(I)(x)|x=x’ = VxD,\Sl+1)(x)|‘c=x+
€,(x) ‘ ,+1( ) '
(10b)
AD(x)| o = BE(x) ooy (10c)
B (x) 1 -
——koD{"(x)+ v H(x)
[.“‘1‘(’6) ‘ py(x) |
X 1 o
_|el®) )kOD;'“)(x)Jr———~va§‘“’(9€)
b, (x) P, (%)
(10d)

Note, that although the interface between different mag-
netic media is considered, the normal H, component is
continuous across the boundary. This results from the form
of the relative permeability tensor i defined in Section II
in which, first diagonal element is equal one. If the restric-
tions (10) are fulfilled, then the boundary value problem
(1) can be alternatively expressed in terms of the operator
equation (5) with linear operator L defined by (6). Simulta-
neously, it is possible to show that the proof of the symrae-
try of the operator L given in Appendix B is still valid.

Let us examine now whether these necessary conditions
are at the same time the sufficient conditions. In other
words we will investigate if they lead to the continuity of
tangential components at the cross-sectional interface.

We may assume that the wavenumbers k¢ and k(" are
the same in each layer. For ith cross-section interface we
put KV =k(*D =k and k) =k{*D =k, Using (A.3),
(A.6), (A 8) together w1th (A. 11) and 1nsertmg nto (10) we
have

D (x) D/*P(x)
€l(x) EHAl(x) ‘<=x,+

AO(2) | gmr = BTV () ez

(11)
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Here, ¢ denotes components tangential to the cross-sec-
tional interface. This implies that the conditions (10) are
entirely equivalent to (11). Thus, we have proved that the
equations (10) form the set of necessary and at the same
time sufficient conditions for normal field components D,

and H_. If they are fulfilled then the tangential fields are
simultaneously matched.

IV. EIGENFUNCTIONS AND EIGENVALUES OF A
PARALLEL-PLATE WAVEGUIDE FILLED WITH LAYERS
oF HOMOGENEOUS GYROMAGNETIC MEDIUM

Presently, in order to illustrate the developed analysis we
will show in detail how to determine transverse mode
functions when ¢ and § are homogeneous inside each
interval, i.e., €,(x)=¢, K,(x)=[, In this case one gets
the structure of parallel-plate line presented in the Fig.
2(b).

First we will find the general solutions of Maxwell’s
equations in ith layer. From (4) we get the wave equation

I
vxz_’_k(%lu‘eff,et-{_s _kOEIM_Zva ‘D)Sl)(x)
11
Fa 1 ., 2 ¥ ~0
kO‘u_'vx 'U,—VY +k0€1+8 H;I)(x)
1 1

7 1

(12)
here & = k2 + k2.
The general solution of the above linear, differential
equation can be expressed as follows:
4

DI (x) = X ALSPexpXP(x—x,_,)
k=1

. 4

HP(x) = 3 APRPexpAP(x—x,_,)  (13)
k=1

where 4{” k =1 to 4 are unknown constants whereas S
and R{" are elements of fundamental matrix for (12) and
AP are roots of its characteristic equation.
Substituting (13) into (12) we get
2

N = =2 = (3] g+ (82 - 4g)"” }Vﬂ

]
A= =29 = (3] - (g3 _480)1/2]}1/2 (14)

where
g =—06(1+ P‘l,) —2kge,py,
goznul,((s+k(%et)(3+k§€zueff,)' (15)

All particular solutions of (12) are linearly independent,

therefore we may put
R{P=RY = 8" =g =1. (16a)

This implies

141 2
[COTNE - 103 . — Y )| 2
R{y'=—- Ry = ko‘;#z,N;)(AS +8+ koe“ueffl)
N — W= — [\ 2
S =—-8"= koia NP (Al +p (84 koe,)). (16b)

Such a choice of R;s and S,s guarantees that R, and S,
which may be interpreted as coupling coefficients, vanish
for isotropic media, and in this case we get two uncoupled
waves.

Having defined the general solution of Maxwell’s equa-
tions in each layer we may determine the characteristic
equation for eigenvalues of the considered boundary value
problem. For this purpose we will apply the transverse
resonance method [9], [13], but instead of matching tangen-
tial fields we will use the continuity conditions (10). To
define the transfer matrix it is convenient to introduce a
continuity vector F. According to (10), we may put

i ; N17T
F®O= [Ff'), F®, F®, F4<‘>]

T
1 p
—v, 0 1 -2k, | |D®
€, by,
— ) . (17)
0 1 0 —v, | [AWD
P,

Subsequently, using the above equation together with (13)
we define the transfer matrix 7 which links the continu-
ity vector F" between the extreme heights x;", x;" ; of the
ith layer.

(18)

F(l)lx=x_ — T(Z)F(l)l

= L 2
where

T =Q,[diag (expAD(x,— x,_1))] 0,7,

k=1---4.
(19)

The elements of the matrix Q, take up the form

7 ”21 H 1 [ 1
Q) = = koSi7 + = NIRY. (20)
L

L

Using continuity conditions (10) and the transfer matrix
notation (19) one can express the transfer of the continuity
vector F through the multilayered structure in terms of
global transfer matrix 7°

1
F(N)|x=xN= ]_[_[Ng(l)f(l)lx=x0=£4><4£(1)1x=x0‘ (21)

Additionally, in order to fulfill the boundary conditions at
the upper x = x, and lower x = x, screen, it suffices to
require
Fl(t) = F2(t) =0,
FO=F»=0,

for an electric wall
. i=lorN.
for a magnetic wall

Inserting (22) into (21) we get the set of linear algebraic
equations. According to the combination of boundary con-
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TABLEI
THE FORM OF THE CHARACTERISTIC EQUATION FOR DIFFERENT
COMBINATION OF BOUNDARY CONDITIONS (T}, are the
SUBMATRICES OF THE GLOBAL TRANSFER Martrix T)

boundary conditions at characteristic
x = X, X o= Xy equation
BE(H, H) =o0 B?(b’, §) =0 det T,, = 0
53, ﬁ) =0 g ®) - o det T, =0
(S, B) = o 558, H) = o Jdet T22 = 0
T 35, H =0 sH(3, ® -0 det Tpq =0

ditions at x = x, and x = x,, the characteristic or eigen-
value equation takes up one of the forms given in Table I.

The solution of the set of linear equations obtained from
(21) under the condition of vanishing of the determinant of
an appropriate submatrix T, allows to determine (via (18)
and (10)) the field amplitudes A) (k=1to 4, i=1to N).
Once these coefficients are evaluated, the transverse mode
function for a layered waveguide is constructed.

V. NUMERICAL EXAMPLE

In this section the results of the numerical investigation
of eigenvalues and eigenfunctions of a ferrite—air parallel-
plate waveguide are presented. In this case the characteris-
tic equation takes up the following form:

R5| ACyS, +

A _
—8C
€

Ay _
— 38y + Ay S5C,
My

(MG - A,G18;)

€4y

—— A _ VA3 __ ~
—[ApS1Cy+ —C1Sp || —83C, + A oGSy | =0
By €

with
S_1(3) = sinh()\l(3)df) Sy = sinh(Ayd,)
Cya = cosh(Ay3d;)  Cy=cosh(Ad,)
where d, da is the height of ferrite and air layer, respec-

tively; ¢, is the relative permittivity of a ferrite medium
and A% = — k3 — 8. From the above formula it is seen that
for the 1sotrop1c limit (i.e., H, tends to infinity; u, —1;
(S}, R;, 1) — 0) one gets two independent characteristic
equations for E, and H, modes similar to those given by
Emert [2].

The frequency behavior of the cigenvalues of the hnear
operator (6) is shown in the Fig. 3. Numerical calculations
have been carried out for the frequency range where 0 <
<1. This region is attractive from the technical point of
view because of the existence of the strong field displace-
ment effect, in particular, in the frequency band in which
prere < 0. Note, that under the condition k, =0, according

d
{racay
L 16
\’\ |
+ dy
“ R T —
wouls 3 T H 0

‘M= 9809 (84 ]
\’”L - 159.24[88]
. 15, =138

Fig. 3.

Eigenvalues of the ferrite—air parailel-platé waveguide.
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Fig. 4. Normalized field"strength for two first eigenfunctions 90 and ipl
of the line depicted in Fig. 3, (f =11 GHz).

to the definition (7), the set of eigenvalues {8;} defines the
modal spectrum {k?} of a parallel-plate line. From the
diagram it is seen that the obtained results agree well with
theoretical predictions. In particular, the curves 8( f) have
no common points which means that the conclusion 5)
given in Section II is valid. However, the curves approach
one another which leads to the conclusion that there exists
a cross-coupling among the modes of a ferrite—air parallel-
plate line.

Additionally, two first e1genfunct10ns ¢° and ¢ are
plotted in the Fig. 4. It is seen that for q> “the H, compo-
nent is dominant, therefore this eigenfunction corresponds
to the (HE®), mode of the parallel-plate ferrite-air wave-
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TABLE 11
THE VALUES OF THE INNER PRODUCT FOR TWO FIRST
EIGENFUNCTIONS
L te

1 k <P RS [t s
o ) 1.7 - 107"
1 0 1.86% < 1076

1 1 1

guide. In the second case E, is dominant, therefore o
corresponds to the (EH') mode of the depicted line.
Finally, in order to verify the orthogonality relation (9), the
inner product for all the combinations of two first eigen-
functions was computed. The results are given in the Table
IL

The finite value of (qo 9 0% can be easily explained by
the accuracy of utilized numerical methods as well as by
the precision of digital computations (seven significant
digits).

CONCLUSIONS

General properties of transverse mode functions of a
parallel-plate  waveguide inhomogeneously filled with
gyromagnetic media have been investigated. These func-
tions which are the eigenfunctions of a linear operator have
been found to create a complete, orthogonal functional set.
Additionally, it has been shown that due to self-adjointness
of the operator all the eigenvalues are real and the eigen-
functions may be chosen to be real. For layered structures,
the new set of continuity conditions for field components
normal to an interface, has been formulated and used to
define the eigenvalue equation. The theoretical predictions
have been confirmed by the results of the numerical inves-
tigation of the eigenvalues and eigenfunctions of a
ferrite—air parallel-plate waveguide.

APPENDIX A

Derivation of a Vector Wave Equation

To derive a vector wave equation for inhomogeneously
filled parallel-plate waveguide, it is convenient to assume
that all functions involved in Maxwell’s equations have
continuous derivatives. Substituting (3) into (1a)-(1d) we
get Maxwell’s equations in the following form:

D

k:;m Vi ( )+]k0‘U.1(X)H
gy (x)H, =0 (A1)
D k,—— D ~k H,
Vx;(—x)“‘ e(x) ot (x)
+ jkop(X)H, =0 (A2)
D,

D,
— kY + jkoH, =0

e (A3)

)
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szx - Vx ~z - jkOl)y =0 (A'4)
v.tﬁlr—ky&t_jkODzzo (AS)
k,H,—k H,~ jkoD, =0 (A.6)

w () (k, A, + K H,) = juy(x)(k A~ k,11,)
+v, H =0 (A7)

k,D,+k,D.+v D, =0. (A.8)
Equation (A.1) together with (A.8) yields
2 D, k,D,+v D, - i
: + : +J
He(x) v E(X) JKo znu’l(x) y
+kok p,(x)H,=0. (A9)

Next, using (A.2) and (A.7) and inserting the results into
(A.9) one gets

1 2 2 2 DY
Vx mvxDx + k‘(;lu'cff ('x)Dx+ (k) + kz)

«(x)
_ liz(x) N
—,ul(x) kv, H.=0 (A.10)
with
_ )=
Hess (x) ul(x)

Similarly from (A.6) and (A.7) we obtain

kH+kH+“2()

koD, +
Nl(x)

1 -
—— v, A,=0. (A1l
() )

Combining this equation with (A.3)-(A.5) we have

1 - 1, (x
v. H, + ko—lﬂ“( )
M(X)

+[(k2+k2) + k3e(x)] A, =0.

DX
(A.12)

Equations (A.10) and (A.12) can be rewritten in vector
form yielding the wave equation defined by (4).

APPENDIX B

Proof of the Symmeiry of L

For any combination of boundary conditions (2a) or
(2b) with the inner product given by (8) operator L defined
by (6) is symmetric, i.e.,

(Lu,vy—{u,Ly)=0

for any u,v €
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Proof: According to (8) one gets
(Lu,v)—{u, Lv)

Xy 1 ‘ 1 ’
=/; {(Ulvx[:(x_)vxul]‘— ulvx[mvxvl}) (B.1a)
+(Ulk§.“eff(x)“f‘“lkgﬂeff(x)vl) (B.1b)
+’—UkMVu +uk-”2(—X)VU) (B.1¢c)
1 0#1(") x%2 10 1(X) xY2 |
o, mal(x) pa(x)
om0 [ g

+ UZV[ e ) -—uZVI: e )sz}) (B.1e)

+(vpk e (x)u,y — uzkge(x)vz)} dx. (B.l‘f)
In the above expression components (B.1b) and (B.1f)
vanish. The remaining terms require integration by parts.
For instance integration of the first term in (B.1a) gives

[ [ ! )wl]dx

XN

1
=0 V Uy
e(x)

xvf 1 '
- — dx. (B.2
j;co (E(X) valvxul) X ( )
According to (2) the first term in (B.2) vanishes for any
combination of boundary conditions for x = x, and x = x .
Applying the same procedure for remaining terms one gets

(Lu,v)—u, Ly>

X0

—— VUV 0y

( )
+ U, [vlkoz—z(—;—)—} -V, [ulkom)_]

1( ) .“‘l(x)
L a(x) ' ,uz(x)
O [ko By (x) ul]_ 4V Ko (o) Ul}
m( () Vet 1< )V‘sz }d ~
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